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Abstract: This paper presents methodologies that have been adopted to enhance the legibility 
of incised texts, in particular Roman wooden stylus tablets, for which the texts consist of the 
incisions left in the wood through a now-perished coat of wax originally covering the wood. 
Digitization of such artefacts is the first step in the development of an interpretation of the 
document. At this stage, mimesis of the real-world strategy of the classicists is a guiding 
principle. Taking into account the 3D nature of the document, shadow-stereo and reflectance 
transformation imaging allow us to capture and to encode multiple images of the text under 
varying illumination conditions for further processing and visualization. Image processing 
algorithms were developed to isolate the text features. Background correction is first 
performed; then ways to achieve text feature extraction have been explored: phase 
congruency, which exploits the fact that visual features are detected for some properties of 
local phase of the image in the Fourier domain; and Markov Random Fields, which take a 
statistical approach to region labelling for image segmentation. Most techniques used here 
were inspired by approaches adopted by medical image processing. These methods had 
however to be largely adapted to our specific application; in general, the images of artefacts 
and their features of interest are not only different from medical images, also the type of 
visual expertise required to detect the text features differs greatly from that of radiologists. 
We conclude by observing that by better understanding the nature of the classicists visual 
expertise, we will further be able to integrate prior knowledge into a model of visual 
perception adapted to the classicists needs, hence supporting them in building meaning out of 
a pure signal, in building an interpretation of an artefact. 
 
 
INTRODUCTION  
Incised texts such as those on Roman stylus tablets or clay cuneiform tablets present the 
particularity of displaying script in volume, and, unlike epigraphic material, of being rather 
small. Deciphering such texts draws on a wide range of expertise that papyrologists develop 
throughout their career. These skills are as much related to visual perception of the artefact 
and its text as they are to palaeographical, linguistic and historical knowledge. Within the 
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scope of the e-Science and Ancient Documents project (eSAD1), we are developing a 
software tool to support papyrologists in their interpretation task. In order to build such an 
Interpretation Support System (ISS), a deeper understanding of the tasks involved in the 
interpretation practice is necessary. One particular trait of the hermeneutic process is that, 
while it unfolds, the mobilized knowledge is multifarious and often implicit (Youtie, 1963); 
interpreting an artefact has recourse to intricately intertwined visual, palaeographical, 
linguistic and historical skills (Tarte, 2010). Building on previous work that elaborated a 
model of papyrological reading2 (Terras, 2006), we were able to identify levels at which 
digital support can be provided. This digital assistance aims to support experts in their 
decipherment of text-bearing artefacts by making explicit some of the mechanisms involved 
in reading an ancient and damaged text. The focus of this paper is on the stages of digitization 
of the artefact and processing of the acquired digital data; these stages correspond to the 
levels of papyrological reading concerned with the physical aspect of the document, the 
features of a character and the identification of a character. They are at the low end of the 
spectrum in terms of intrinsic meaning of the levels of reading, and they heavily condition the 
progressive build-up of meaning. We show here how we have attempted to digitally imitate 
the incredibly specialized expertise of the papyrologists in order to facilitate interpretation. 
Roman wooden stylus tablets from Vindolanda and Tolsum, for which the texts consist of the 
incisions left in the wood through a now-perished coat of wax originally covering the wood, 
constitute the main case study of the paper.  
 
 
IMAGE CAPTURE 
Creating a digital representation of a text-bearing artefact is never neutral, and care must be 
taken that the intended use of the digital avatar of the object is clear when proceeding with 
digitization. In this context, it is the observation of the experts setting to interpret a text-
bearing artefact that informed us on how the tablets could be digitized whilst retaining in 
particular one major piece of information that papyrologists exploit when deciphering it, 
namely, the volumetric nature of the text, i.e. one crucial aspect of its materiality.  
 
Shadow-stereo 
Experts who have access to the actual tablet they intend to transcribe and interpret have 
developed a very specific and intuitive strategy to enhance the visibility of the incisions that 
the stylus left in the wood. They lay the tablet flat on their hand, lift it up at eye level against a 
light source and apply pitch-and-yaw motions to the artefact. What they effectively do is 
enhance the visibility of the incisions by accentuating the highlights and shadows that the 
raking light generates; the lower the light the longer the shadows projected by the text in 
(inverted) relief created by the incisions carved on the surface of the tablet. The principle that 
is put into application here is the shadow-stereo principle by which concave shapes are 
revealed from shading, and the motion of the shadows exposes the location of the incisions 
(Brady et al., 2005). This process can be digitally imitated through a set-up where a digital 

                                                             
1 Project website: http://esad.classics.ox.ac.uk 
2 There are ten levels of papyrological reading defined in (Terras, 2006). They were identified through the study 
of the subjects around which discussions revolved during the interpretation of Roman wooden tablets from 
Vindolanda; they are ordered according to increasing intrinsic meaning: (0) Archaeological or historical context; 
(1) Physical attributes of the document; (2) Features of a character; (3) Possible character; (4) Possible sequence 
of characters; (5) Possible word or morphemic unit; (6) Grammar; (7) Meaning or sense of a word; (8) Meaning 
or sense of a phrase or group of words; (9) Meaning of the document. 
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camera is affixed above the tablet laying flat and a high-resolution digital picture is taken for 
each one of a set of pre-established positions of a light source around the tablet. Each light 
position is described by an elevation angle and an azimuth angle, where the azimuth angle 
corresponds to an angle deviation from the horizontal in the plane of the tablet and the 
elevation angle describes the height of the light with respect to the plane of the tablet (Fig. 1). 
Both angles are measured from the centre of the tablet. 

 

Figure 1: Definition of the azimuth angleαand elevation angleθ  to describe the lighting conditions with 
respect to the tablet. 

Reflectance Transformation Imaging through Polynomial Texture Maps  
Taking into account the volumetric aspect of the materiality of the text by taking a set of high-
resolution digital pictures with varying lighting directions is the first step of the attempt to 
mirror the shadow-stereo principle in the digital world. Typically, a set of between N=28 and 
N=56 images is collected. Each image is 4288x2848 pixels for artefacts of approximately the 
size of a modern postcard (8x12cm), making each image approximately 13MB. The collected 
data for each tablet was further used to recreate digitally the shadows and their motion. By 
adopting an appropriate model of image formation not only can one store the set of images 
efficiently without having to store each image, one can also interpolate between light 
positions, thus simulating lighting conditions that where not actually captured. The image 
model that is adopted relies on reflectance transformation (Malzbender et al., 2001; Goskar 
and Earl, 2010). Consequently, each image can be expressed in the RGB space as:  
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L(x,y)(u,v) is the luminance at pixel (x,y) for the lighting condition (u,v); (u,v) parameterizes the 
light position so that u = cosα cosθ and v = sinα cosθ for azimuth angle α and elevation 
angle θ (Fig. 1). An appropriate model for L is a biquadratic in (u,v) of the form:  
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It is this function L(x,y) that needs to be determined on the basis of the acquired images, for 
each pixel (x,y). Determining the coefficients a0

(x,y),…,a5
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  of L(x,y) and the light independent 
coefficients (R0

(x,y), G0
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(x,y)) means solving an over-constrained system of equations for 
each pixel (x,y), which can be done by Singular Value Decomposition (SVD). So that instead 
of storing the 3N values for each pixel as we would if we were to store each of the N acquired 
images, all that needs to be stored for each pixel is the set of: the basic (R0

(x,y), G0
(x,y), B0

(x,y)) 
values and the 6 values a0

(x,y),…,a5
(x,y), so only the equivalent of up to 7 times the size of one 

colour image, rather than N∈{28,56} colour images. This new image is called a Polynomial 
Texture Map (PTM), as it describes each pixel based on a biquadratic polynomial (L(x,y)(u,v)) 
which enables to characterize the variation in pixel colour (or texture) according to the light. 
It is then also possible to simulate any (α,θ) lighting condition on the artefact, and, with an 
adequate piece of software3, to interactively simulate light motion.  
 
 
IMAGE PROCESSING 
Here again, mimesis is our guiding principle. The visual system is a powerful and complex 
system that can only be emulated if we understand how it functions. Its complexity prompts to 
set as a first aim to emulate human performances, before attempting to surpass it. In 
particular, we need to grasp how the experts' visual system proceeds to discriminate 
background from text. It appears that concurrently to enhancing the image, as presented in the 
Image Capture section, the visual system adapts to ignore distracting noise as well as it looks 
for text elements with some expected shapes or occurrences of characteristic features. In 
image processing terms, this can be assimilated to concurrent noise removal and image 
segmentation. On one hand, noise removal addresses the need to homogenize the background 
by removing patterns or behaviours that are irrelevant to the text. And on the other hand, 
image segmentation is concerned with extracting the meaningful areas or features of the 
image and thereby intends to identify where the text is located. 
Background Correction 
From the PTM files, it is possible to extract a set of images that have the optimal lighting 
conditions for the visibility of the stylus strokes. Those conditions correspond to low raking 
light positions, where the direction of lighting is approximately aligned with the grooves of 
the wood-grain, thus minimizing the shadow cast by the wood-grain itself, yet producing the 
most visible shadows for strokes not aligned with the wood-grain. We sample 18 images from 
the PTM, corresponding to: -15o ≤ α ≤ 15o or 165o ≤ α ≤ 195o (alignment with the wood-
grain); and 0o ≤ θ ≤ 6o (raking light). These images however are quite noisy, and before 
exploiting the multi-view nature of the PTM, we need to remove the distracting elements 
from each of these images, namely: the uneven illumination, and the stripes of the wood-
grain4. To perform illumination correction, homomorphic filtering is the method of choice. It 
                                                             
3 e.g. developed by HP labs: http://www.hpl.hp.com/research/ptm/ –last checked: September 29, 2010 
4 From this point on, all images are assumed to be grey value images. To obtain a grey value image I from a 
RGB image, we eliminate hue and saturation, and retain luminance: I = 0.2989×R + 0.5870×G + 0.1140×B 
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was implemented with a moving average algorithm, which approximates a low-pass filtering, 
and achieves a levelling of the brightness throughout the image (Pan, 2004).  Removing the 
wood-grain is further achieved by taking advantage of the surface properties of the tablet and 
of the expected geometrical behaviour around the grooves of the wood-grain. Assuming 
Lambertian reflectance of the surface and that the local colour is constant, assuming also that 
the wood-grain is aligned with the lighting direction (α ≈ 0o or α ≈ 180o), the pixel values 
obey: 
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constant colour and γ(y) is the angle between the incident light (the incident angle is denoted 
θ in Fig. 1) and the normal vector to the surface of the tablet 
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by artificially forcing γ(y) = π /2 - θ (where θ is the incident light angle) one can level up the 
grooves of the wood-grain, thereby removing them (Fig. 2). 
 

  
(a) Portion of a stylus tablet (b) After illumination correction and wood-grain removal 

Figure 2: Before and after background correction 

 
Image Segmentation for Text Feature Detection  
In the following three subsections, we present methods that were applied to perform feature 
detection.  

 Combining the PTM Information for Feature Detection  
After the individual images have been cleaned up from the obvious noisy signal (as described 
above), the images need to be combined in such a way that the visibility of the strokes 
constituting the text is further enhanced. To that end, a single image is produced; it is the 
absolute difference image between the maximum of all images (the image that keeps all the 
brightest pixels in the set of images) and the minimum of all images (the image that keeps all 
the darkest pixels in the set of images):  
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Because the strokes are illuminated from opposite directions, the areas where highlight and 
shadow occur overlap and the difference image accentuates their location (Fig. 3 and 4-a). 
The next step is to identify these locations by segmenting this difference image. 
“Segmentation subdivides an image into its constituent regions or objects” (Gonzalez and 
Woods, 2008). As such, image segmentation is a very generic problem for which there are 
only domain-specific solutions. Specific domains develop specialized ways of looking and of 
seeing that impose implicit expectations as to what is to be seen. Each domain-specific 



Forthcoming in: Commentationes Humanarum Litterarum (Societas Scientiarum Fennica) 

solution to the image segmentation problem integrates (to a certain extent) some of the 
domain-specific knowledge. Strategies to carry out image segmentation can however 
generally be seen as region labelling methods or as feature detection approaches, or as a 
combination of both. Region labelling methods set out to determine patches of images that 
share a given property, whereas feature detection procedures implement a search for breaks in 
the uniformity of the image. Ultimately in ideal cases, one can see the borders of the patches 
produced by region labelling as features; and the objects detected by feature detection 
algorithms can be seen as delimiters for regions. In short, region labelling concentrates on 
extracting uniform regions (for a domain-specific definition of “uniform”), and feature 
detection works to extract breaks in uniformity (for a domain-specific definition of “break in 
uniformity”).  

 

 
Figure 3: Obtaining the difference image Idiff (lower left image) 

 Markov Random Fields 
Markov Random Fields (MRFs) belong to the region labelling category of segmentation. 
MRFs take a statistical approach to vision and encode contextual constraints in their strategy 
(Li, 2009). In particular, MRFs consider the probability for a pixel to belong to one or another 
region of the image. Based on neighbourhood considerations, on an estimated prior model, 
and on assumptions about the interactions between the various labelled regions, it computes 
the likelihood for a pixel to belong to a given region, and allows to correct pixel values 
accordingly. An optimization scheme finds the equilibrium point, where not only is the 
labelling determined, also the prior model is progressively adapted to fit the data better. To 
implement this optimization scheme, we have adopted the Expectation Maximization (EM) 
algorithm, as described in (Van Leemput et al., 1999), with a local behaviour following an 
isotropic Gaussian distribution. As a result, the pixel values are “corrected” and a smoother, 
more consistent image is produced. Although no visual difference is noticeable between the 
input and output images of the MRFs, the subsequent image processing algorithms seem to 
give better result if this MRF image correction step is taken. Interestingly however, this 
algorithm performs poorly in terms of pure region labelling, due to the amount and nature of 
the noise present in the image. We shall consider this noise problem further in the Discussion. 
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 Phase Congruency  
After correcting the image by means of MRFs, the main aim is to detect text features. Text 
features are here characterized by ridges, or adjacent steps patterns. It has been shown that the 
feature information is predominantly contained in the local phase information of an image. 
Local phase is a quantity that appears in all signals and is defined as follows. Locally, every 
(1D) signal can be modelled as a periodic signal of period T and thus expressed as a Fourier 
series:  
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where φn is the local phase at the nth harmonic. Remarkably, it was hypothesized (and further 
demonstrated) by teams of psychologists, computer scientists and neuroscientists (Oppenheim 
and Lim, 1981; Morrone and Owens, 1987; Henriksson et al., 2009), that when a feature is 
present in a signal, the value of φn is constant with value Φ, and doesn’t depend on the rank of 
the harmonic; the phase is then said to be congruent throughout harmonics. So that a strategy 
to detect features is to look for those locations where φn does not depend on n. Further, the 
actual value of Φ, when phase congruency occurs, characterizes the nature of the feature. In 
particular: Φ = π/2 indicates a valley; Φ = π/2 denotes a ridge; Φ = 0 represents a step up;    
Φ = π designates a step down (Venkatesh and Owens, 1990). Computing the phase value 
however (be it for 1D signals or images), and finding where it is congruent throughout 
harmonics is a complex task. It requires to first evaluate phase values that correspond to 
ranges of harmonics, which is done through band-pass filtering in the Fourier domain 
(Kovesi, 2000; Felsberg and Sommer, 2004). The choice of the band-pass quadrature filters 
used to compute phase at various scales (harmonics) depends heavily on the type of features 
that are searched, and in particular their scale coverage and sharpness (Boukerroui et al., 
2004). We have opted for a difference of Gaussians. The next step is to assess if congruency 

  
(a) Difference image 

– 1712 ×1008 pixels – 
(b) Phase map 

– Φ in degrees – 

  
(c) Manually traced characters 

– control image – 
(d) Thresholded phase values Φ 

– in white: 75o ≤ Φ ≤ 90o – 

Figure 4: Portion of a stylus tablet with two characters. 
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occurs throughout scale-space5. To that effect, we use NP-windows (Kadir and Brady, 2005) 
to evaluate the probability distribution of phase values throughout scales. The result is a phase 
map, where each pixel is associated to its most probable phase value (Fig. 4-b). In the context 
of the text features in the difference image (as defined in the section ‘Combining the PTM 
Information for Feature Detection’), we are looking for ridges. So, we can threshold the phase 
map to keep all pixels with local phase value between 5π/6 (75o) and π/2 (90o) (Fig. 4-d). The 
thresholded phase map shows the locations where a ridge feature was detected. Subsequent 
processing needs then to be applied to determine which are the locations that correspond to 
text features.  
 
 
DISCUSSION  
Image segmentation is an arduous task that presents numerous hurdles. The methods used 
here are methods that have largely been successful for medical images. Their performance on 
images of ancient texts, despite being very promising, are not as straightforwardly good as  
we had hoped. There are several reason for that. One reason is that the images of ancient 
documents are noisy. Naturally, medical images are noisy too (Pham et al. 1999), but the 
nature of the noise in medical images is preponderantly due to the imaging modality6. In 
general, these imaging modalities are based on the understanding of a physical phenomenon, 
such as the attenuation of X-rays (in X-ray imaging) or the re-orientation of water molecules 
(in Magnetic Resonance Imaging). The noise that affects the images in those cases is then 
only due to the measurement device that produces the images, as the physical model of 
interaction between the emitted “waves” (X-rays, MR) and the body they traverse is a 
complete one. Similarly, photographic imaging is the transposition of an optical effect, and is 
also affected by noise. However, this noise due to the photographic procedure in images of 
artefacts isn’t the only type of noise present in the images. Noise, defined as “random 
fluctuations that obscure or do not contain meaningful data or other information”7, is also in 
our context anything that obscures the reading (our sought “information”). As such, stains and 
the general state of degradation of the artefact where writing is located constitutes noise, and 
we do not have any model for this type of noise. The state of the artefact itself, after a long 
sojourn in various (sometimes extreme!) conditions, is a major factor in the legibility of its 
text. So compensating for this kind of noise, albeit possible in some cases (as we attempted 
here with MRFs and wood-grain removal), is usually the main difficulty. Phase congruency is 
a powerful tool, but it expects the features to follow an almost perfect model, and the 
complexity of the algorithms used makes them all the more sensitive to noise.  
Another interesting consideration, and point of comparison with medical imaging, is the way 
the images are interpreted. The algorithms used here were originally developed to support the 
interpretation and understanding of medical images. Medical images are ‘figurative’ images, 
for which the information relates to geometrical, topological or functional representations of a 
physiological or anatomical phenomenon (Cohn, 2007). They are laden with meaning of a 
very different nature than the meaning carried by ‘textual’ images. The assumption in using 
the same type of algorithms in both cases is that the primitives that allow further 
interpretation are of the same kind and follow perfect models of edges, ridges, valleys and 
                                                             
5 We here use the terms scale-space and Fourier domain interchangeably. 
6 It is worth stressing that although we evoke medical images as a unified set, they do vary widely in nature and 
quality. We do not intend to present a review of medical imaging here, and so we only focus on the commonality 
between those various medical images from an image processing point of view. 
7 From the New Oxford American Dictionary, Apple Inc.’s Dictionary V.2.0.3. 
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steps. Yet, even if the primitives on which interpretation is based are similar, how much of the 
implicit knowledge and assumptions have been encoded in the algorithms is unclear. It is 
important here to be conscious that the knowledge attached to ‘figurative’ medical image is 
likely to follow very different semantic rules from those attached to ‘textual’ images. To 
evaluate if and how much implicit knowledge has been encoded in the algorithms, it would be 
useful to understand if the mental organization (and summoning) of textual information and 
that of figurative information differ.  
The cognitive processes involved in the act of interpretation and the fact that they are mostly 
implicit are one of the reasons why it is so tricky to emulate what the visual system does. 
Seeing that and seeing as (Neer, 2005) are intricately intertwined, and despite the fact that 
levels of reading have been clearly identified in the model of papyrological reading we have 
adopted form (Terras, 2006), oscillations between these levels constantly occur and are 
triggered mostly by expectations, of the visual, historical or philological type (Tarte, 2010). It 
is because meaning seeps in at all stages of the interpretation through the oscillations between 
the levels of reading that providing digital support for such a task is an exciting challenge. 
How can a digital tool keep allowing and even facilitate the oscillations, while providing 
useful tools at each level of reading? One element of answer is certainly: by not constraining 
the experts to a rigid pre-determined workflow.  
 
CONCLUSION  
The challenge of image processing and capture for ancient incised documents is multiple and 
specific to both the imaging method and the artefact. We have presented how we propose to 
capture the 3D nature of the artefact in a way that mimics the experts’ strategy to enhance the 
visibility of the text. By exploiting the play of light with the 3D nature of the text, we are able 
to enhance its legibility. Background correction is used to neutralize some of the distracting 
noise present in the images through homomorphic filtering and wood-grain removal; and a 
powerful feature detection technique, based on phase congruency –which was shown to be a 
crucial mechanism of visual perception in feature detection– is further applied to isolate text 
features. Each of these individual techniques were ported from medical imaging but had to be 
combined in a specific way and adjusted to the needs of the classicists. To further support the 
experts in their interpretation enterprise, we need to understand how to combine visually and 
meaningfully the amount of information extracted by image processing, and complement it 
with access to prior palaeographical knowledge. Throughout this work, the understanding of 
the cognitive processes involved in the hermeneutic task and attempts to emulate them are 
serving as guides to inform the implementation of our tool. It is important to stress here that 
the ultimate aim is not to replace the experts, but rather to provide them with a useful tool that 
can help them produce explicit evidence for their findings. Future work will concentrate on 
designing a system that offers these functionalities to support the papyrologists. We will strive 
to allow them to work through their natural workflow, in particular to allow the all-important 
meaning-generating oscillations between the levels of reading. This system will be integrated 
within a rationale recording tool that will allow to make hypotheses and their supporting 
evidence explicit (Roued-Cunliffe, 2010). The results of the algorithms presented here may be 
used (if desired!) as evidence in such a chain of reasoning, all in an effort to reveal the 
intricacies of the transition from signal to meaning, from the image of the text-bearing artefact 
to the interpretation of the text. 
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