

Department of Information Studies University College London m.terras@ucl.ac.uk

<u> ^UCL</u>

Handwriting and Character Recognition

- Reading Handwriting is a primary aim of computing and engineering science
 - Vast research projects, various successes (OCR, etc)
 Reading "difficult" texts beyond canacity of most computational structure of the second canacity of the second s
- Reading "difficult" texts beyond capacity of most computational approaches
 Copperplate, dirty, noisy images, damaged, deteriorated
 What, if any, approaches can be used to assist papyrologists in reading
- what, if any, approaches can be used to assist papyrologists in reading damaged and abraded texts?
 How can you train computers to "read" ancient texts?
- Provide any out that computers to read any
 Do we want them to "read" them?
- Case study regarding Vindolanda tablets
- Henriette's current research on Interpretation Support Systems

Vindolanda Texts

- Roman Fort on Hadrian's Wall, England
 Texts from AD 92 onwards
- Two types
- ink texts
 Carbon ink on wood. 750 texts survive
- stylus tablets
 recessed centre filled with wax. 150 texts
- Only contemporary and immediate written evidence of Roman Army in Britain

≜UCL

Close up - Tablet 1563 -Complex incisions -Woodgrain -Surface discolouration -Warping -Cracking -Noisy image -Palimpsest -Long process

±UCI

Vindolanda and Research – a reminder

- Experts were observed reading ancient texts
 > Use raking light
- Digital Imaging Techniques were developed to analyse the surface of texts and to identify candidate strokes
 - "Phase Congruency"
- Professor Sir Mike Brady, Dr Veit Schenk, Dr Nick Molton, Dr Xiao-bo Pan (Engineering Science, University of Oxford)
- Professor Alan Bowman, Dr Charles Crowther (Centre for the Study of Ancient Documents, University of Oxford)
- Dr Segolene Tarte (e-Science Centre, University of Oxford)

UCL

What Is The Problem?

Need to build a system which **aids** in the transcription of the stylus texts

- > Need to understand the process of reading an ancient text
- > Information from the Vindolanda ink texts
 - > Palaeographical
 - > Linguistic
- Access to Experts
- > Mobilise knowledge of these to implement a system
- Dovetail with Image Processing System
 Cognitive Image Understanding System

Tackling the Problem

Need to model process experts use as a basis for a computer model

UCL

≜UCL

≜UCI

- Need to build up a dataset of palaeographic and linguistic information to train a computer system, based on expert information
- Need to combine the model and the information in a system that will output *possible* and *plausible* interpretations

UCL

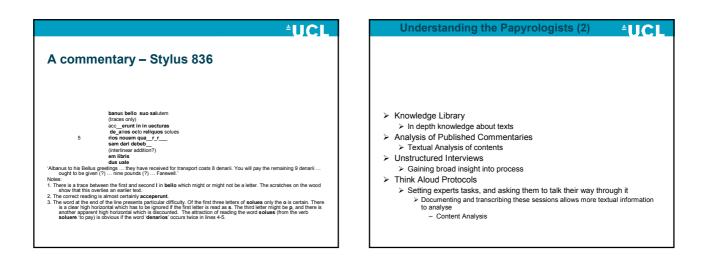
Modelling Expert Behaviour

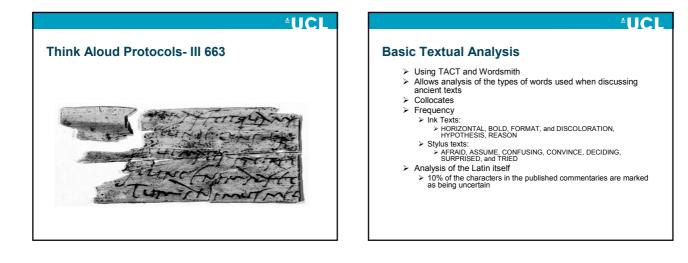
- Modelling expert behaviour is a common approach used in Artificial Intelligence and Cognitive Psychology
- ≻ Two benefits
 - Modelling a process shows that you understand the process
 - Making an explicit model of the process provides the basis for the design of a computational system

The Papyrologist at Work

- Little research done into how papyrologists read and make sense of ancient texts
- Little research done on the process of reading damaged or ambiguous texts
- Little research done on the role of knowledge and reasoning in the analysis and understanding of complex images

[±]UCL

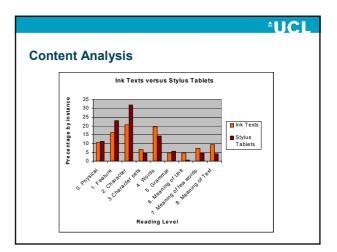

Knowledge Elicitation

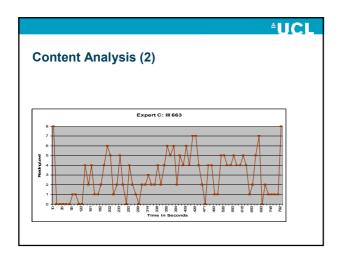

- Experts are notoriously bad at talking about their expertise
- Structured process for making explicit often unconsciously-mobilised knowledge used by an expert
- Developed protocols
 - Knowledge Library
 - Structured Interviews
 - Walk throughs
 - Transcripts
 - Analysis of discussions

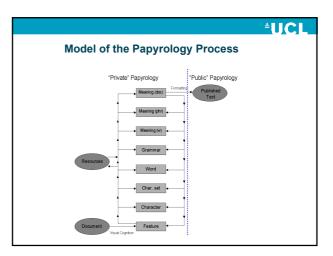
Understanding the Papyrologists

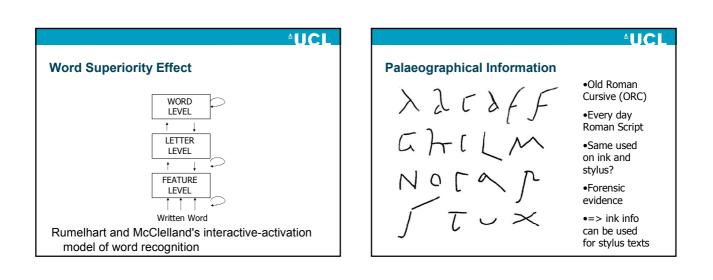
For Vindolanda

- > Two volumes of published ink texts
 - Possible to do computational analysis of published commentaries
 - > (since this research, another has been published)
- Access to experts
 - ➤ Willing to be studied

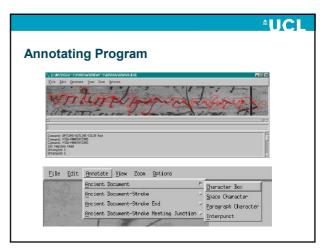


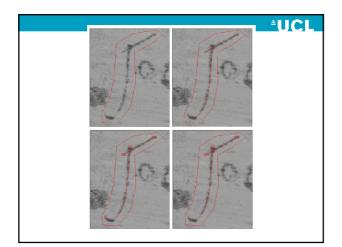



±	Т	17	~	
		T,	5	


Content Analysis

Reading Level	Thematic Subject
8	Meaning or sense of document as a whole
7	Meaning or sense of a group or phrase or words
6	Meaning or sense of a word
5	Discussion of grammar
4	Identification of possible word or morphemic unit
3	Identification of sequence of characters
2	Identification of possible character
1	Discussion of features of character
0	Discussion of physical attributes of the document
-1	Archaeological or historical context
	· · · · · · · · · · · · · · · · · · ·

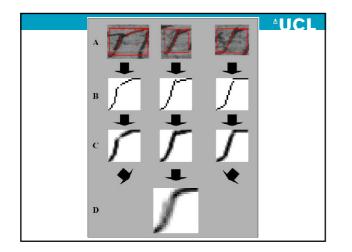


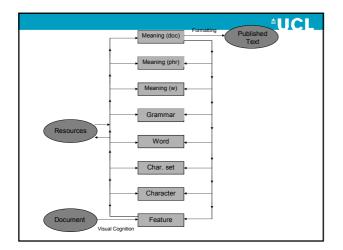


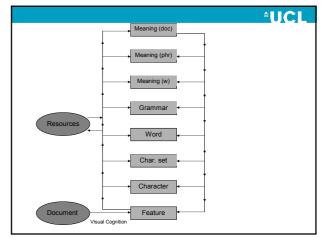
[±]UCL

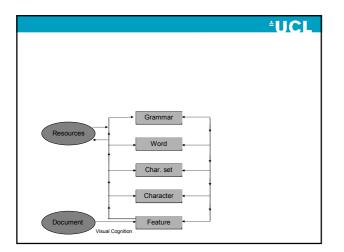
Corpus Building

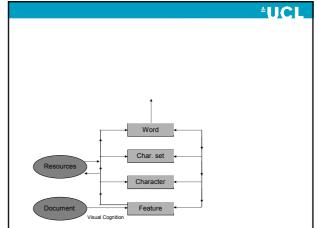
- Collect palaeographical information
 Textual Sources
 - > Knowledge Elicitation exercises
- Develop an encoding scheme
 based on expert information
 - > markup images -> XML text file
- Choose sample set and obtain Digital Images
 Expert to provide data
 - British Museum
- Identify tool to markup images of text
- Mark up a corpus of images of large enough size to train a system

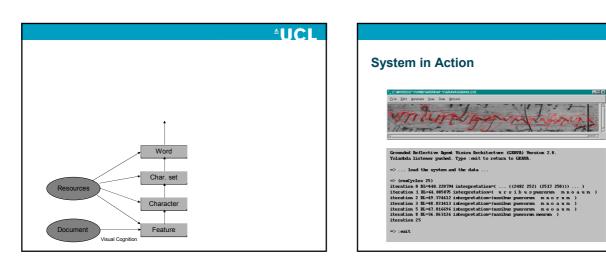



[±]UCL


Result of Annotations


- > 9 Documents annotated
- ➤ 1506 ink characters annotated
- 180 characters from stylus tablets
- ➤ 300 hours of work
- ➢ 6 or 7 characters annotated per hour
- Allowed comparison of character info
- First major palaeographic dataset of ORC





[±]UCL

Can computers ever read ancient texts?

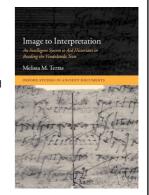
- Well, they can provide suggestions, based on known evidence
- They can keep a record of hypotheses encountered, discounted, and followed

±UCI

≜UCL

Outcomes

- Built a prototype computer system that takes in unknown text and provides readings of that text based on known probabilities
- > To speed up functioning of papyrologist, not replace them!
- Built for a specific audience and problem
- Proof of concept to show strength of architecture
- > Indicate possibilities of a "Signal to Symbol" system
- No reason why this couldn't be expanded across various types of text
 - > Or individual tools image markup- developed for the individual humanities scholar.


UCL

Outcomes (2)

- > Computational techniques used to drive the system far from standard
 - Allowed real world application to test computational theory in AI
 - > Benefited Engineering Science audience as well as Humanities scholars
- ➤ Research continues...
- > Experimenting with truth maintenance systems
 - > Online tools to aid in transcription
 - Record hypothesis and decisions

To conclude

- Can Computers ever read ancient texts? ≻ Maybe
- Wrong question to ask:
- Can Computers ever be used to *aid* in reading ancient texts
 - ≻ Yes
 - Yes
 Developing an understanding of how we can use technology to aid papyrologists brings an understanding of papyrology itself.

≜UCI